

Django Elasticsearch DSL

Contents:

	Django AnySearch DSL
	Manifest

	Features

	Quickstart
	Install and configure

	Declare data to index

	Populate

	Search

	Index
	Signals

	Fields
	Using Different Attributes for Model Fields

	Using prepare_field

	Handle relationship with NestedField/ObjectField

	Field Classes

	Available Fields

	Document id

	Settings
	ELASTICSEARCH_DSL_AUTOSYNC

	ELASTICSEARCH_DSL_INDEX_SETTINGS

	ELASTICSEARCH_DSL_AUTO_REFRESH

	ELASTICSEARCH_DSL_SIGNAL_PROCESSOR

	ELASTICSEARCH_DSL_PARALLEL

	Management Commands

	Contributing
	Testing

	TODO

Indices and tables

	Index

	Module Index

	Search Page

Django AnySearch DSL

[image: _images/badge.svg]
 [https://github.com/django-anysearch/django-anysearch-dsl/actions/workflows/ci.yml][image: _images/coverage.svg]
 [https://codecov.io/gh/django-anysearch/django-anysearch-dsl][image: _images/django-anysearch-dsl.svg]
 [https://pypi.python.org/pypi/django-anysearch-dsl][image: _images/1a42a08f45b54533078433f420a22337170c0664.svg]
 [https://django-anysearch-dsl.readthedocs.io/en/latest/]Django AnySearch DSL is a package that allows indexing of Django models in Elasticsearch/OpenSearch.
It is built as a thin wrapper around elasticsearch-dsl-py [https://github.com/elastic/elasticsearch-dsl-py] (and OpenSearch alternative).

You can view the full documentation at https://django-anysearch-dsl.readthedocs.io

Manifest

This project is a fork of django-elasticsearch-dsl [https://github.com/django-es/django-elasticsearch-dsl] with a single ultimate
purpose of supporting both Elasticsearch and OpenSearch. Compatibility is
achieved through anysearch [https://github.com/barseghyanartur/anysearch] which does necessary import replacements depending
on which one (Elasticsearch or OpenSearch) is chosen (similarly to what six
package does to support both 2.x and 3.x branches of Python).

	Both elasticsearch and elasticsearch-dsl are optional
dependencies (as well as opensearch-py and opensearch-dsl) and are
installed when instructed (like pip install django-anysearch-dsl[elasticsearch]
or pip install django-anysearch-dsl[opensearch]).

	anysearch is a required dependency.

The plan is to stay in sync with the django-elasticsearch-dsl [https://github.com/django-es/django-elasticsearch-dsl], so if you’re
missing a feature or have a bugfix, please propose it in the upstream.

	Submit PRs here only if they are solely related to this package and not
the django-elasticsearch-dsl [https://github.com/django-es/django-elasticsearch-dsl].

	Do not propose code style changes or changes that contain reformatting
of the code (like black or isort fixes). Such things shall be
proposed in the django-elasticsearch-dsl [https://github.com/django-es/django-elasticsearch-dsl]. Code changes to this package
are kept minimal, so that it’s easier to stay in sync.

Versioning is kept in sync up to the build (in terms of Semantic
versioning major.minor[.build[.revision]), so version 7.2.2.x of this
library would represent the version 7.2.2 of the upstream. All changes
are mentioned in the changelog [https://github.com/django-anysearch/django-anysearch-dsl/blob/django-anysearch-dsl/CHANGELOG.rst].

This library is a drop-in replacement, it does have the same namespace as
django-elasticsearch-dsl, thus you can’t have both installed.

Due to complexities, no support for older versions of Elasticsearch (< 7.x)
is provided (and will never be).

Features

	Based on elasticsearch-dsl-py [https://github.com/elastic/elasticsearch-dsl-py] so you can make queries with the Search [http://elasticsearch-dsl.readthedocs.io/en/stable/search_dsl.html] class.

	Django signal receivers on save and delete for keeping Elasticsearch in sync.

	Management commands for creating, deleting, rebuilding and populating indices.

	Elasticsearch auto mapping from django models fields.

	Complex field type support (ObjectField, NestedField).

	Index fast using parallel indexing.

	Requirements

	Django >= 2.2

	Python 3.6, 3.7, 3.8, 3.9, 3.10 or 3.10.

Elasticsearch Compatibility:
The library is compatible with Elasticsearch 7.x, OpenSearch 1.x and OpenSearch 2.x.

Elasticsearch 7.x
elasticsearch-dsl>=7.0.0,<8.0.0

OpenSearch 1.x
opensearch-dsl>=1.0,<2.0

OpenSearch 2.x
opensearch-dsl>=2.0,<3.0

Quickstart

Install and configure

Install Django Elasticsearch DSL:

pip install django-anysearch-dsl

Then add django_elasticsearch_dsl to the INSTALLED_APPS

You must define ELASTICSEARCH_DSL in your django settings.

For example:

ELASTICSEARCH_DSL={
 'default': {
 'hosts': 'localhost:9200'
 },
}

ELASTICSEARCH_DSL is then passed to elasticsearch-dsl-py.connections.configure (see here [http://elasticsearch-dsl.readthedocs.io/en/stable/configuration.html#multiple-clusters]).

Declare data to index

Then for a model:

models.py

class Car(models.Model):
 name = models.CharField()
 color = models.CharField()
 description = models.TextField()
 type = models.IntegerField(choices=[
 (1, "Sedan"),
 (2, "Truck"),
 (4, "SUV"),
])

To make this model work with Elasticsearch,
create a subclass of django_elasticsearch_dsl.Document,
create a class Index inside the Document class
to define your Elasticsearch indices, names, settings etc
and at last register the class using registry.register_document decorator.
It is required to define Document class in documents.py in your app directory.

documents.py

from django_elasticsearch_dsl import Document
from django_elasticsearch_dsl.registries import registry
from .models import Car

@registry.register_document
class CarDocument(Document):
 class Index:
 # Name of the Elasticsearch index
 name = 'cars'
 # See Elasticsearch Indices API reference for available settings
 settings = {'number_of_shards': 1,
 'number_of_replicas': 0}

 class Django:
 model = Car # The model associated with this Document

 # The fields of the model you want to be indexed in Elasticsearch
 fields = [
 'name',
 'color',
 'description',
 'type',
]

 # Ignore auto updating of Elasticsearch when a model is saved
 # or deleted:
 # ignore_signals = True

 # Configure how the index should be refreshed after an update.
 # See Elasticsearch documentation for supported options:
 # https://www.elastic.co/guide/en/elasticsearch/reference/master/docs-refresh.html
 # This per-Document setting overrides settings.ELASTICSEARCH_DSL_AUTO_REFRESH.
 # auto_refresh = False

 # Paginate the django queryset used to populate the index with the specified size
 # (by default it uses the database driver's default setting)
 # queryset_pagination = 5000

Populate

To create and populate the Elasticsearch index and mapping use the search_index command:

$./manage.py search_index --rebuild

Now, when you do something like:

car = Car(
 name="Car one",
 color="red",
 type=1,
 description="A beautiful car"
)
car.save()

The object will be saved in Elasticsearch too (using a signal handler).

Search

To get an elasticsearch-dsl-py Search [https://elasticsearch-dsl.readthedocs.io/en/latest/search_dsl.html#the-search-object] instance, use:

s = CarDocument.search().filter("term", color="red")

or

s = CarDocument.search().query("match", description="beautiful")

for hit in s:
 print(
 "Car name : {}, description {}".format(hit.name, hit.description)
)

The previous example returns a result specific to elasticsearch_dsl [http://elasticsearch-dsl.readthedocs.io/en/latest/search_dsl.html#response],
but it is also possible to convert the elastisearch result into a real django queryset,
just be aware that this costs a sql request to retrieve the model instances
with the ids returned by the elastisearch query.

s = CarDocument.search().filter("term", color="blue")[:30]
qs = s.to_queryset()
qs is just a django queryset and it is called with order_by to keep
the same order as the elasticsearch result.
for car in qs:
 print(car.name)

Index

In typical scenario using class Index on a Document class is sufficient to perform any action.
In a few cases though it can be useful to manipulate an Index object directly.

To define an Elasticsearch index you must instantiate a elasticsearch_dsl.Index class
and set the name and settings of the index.
After you instantiate your class,
you need to associate it with the Document you want to put in this Elasticsearch index
and also add the registry.register_document decorator.

documents.py
from elasticsearch_dsl import Index
from django_elasticsearch_dsl import Document
from .models import Car, Manufacturer

The name of your index
car = Index('cars')
See Elasticsearch Indices API reference for available settings
car.settings(
 number_of_shards=1,
 number_of_replicas=0
)

@registry.register_document
@car.document
class CarDocument(Document):
 class Django:
 model = Car
 fields = [
 'name',
 'color',
]

@registry.register_document
class ManufacturerDocument(Document):
 class Index:
 name = 'manufacture'
 settings = {'number_of_shards': 1,
 'number_of_replicas': 0}

 class Django:
 model = Manufacturer
 fields = [
 'name',
 'country_code',
]

When you execute the command:

$./manage.py search_index --rebuild

This will create two index named cars and manufacture
in Elasticsearch with appropriate mapping.

** If your model have huge amount of data, its preferred to use parallel indexing.
To do that, you can pass –parallel flag while reindexing or populating.
**

Signals

	
	django_elasticsearch_dsl.signals.post_index
	Sent after document indexing is completed. (not applicable for parallel indexing).
Provides the following arguments:

	sender
	A subclass of django_elasticsearch_dsl.documents.DocType used
to perform indexing.

	instance
	A django_elasticsearch_dsl.documents.DocType subclass instance.

	actions
	A generator containing document data that were sent to elasticsearch for indexing.

	response
	The response from bulk() function of elasticsearch-py,
which includes success count and failed count or error list.

Fields

Once again the django_elasticsearch_dsl.fields are subclasses of elasticsearch-dsl-py
fields [http://elasticsearch-dsl.readthedocs.io/en/stable/persistence.html#mappings]. They just add support for retrieving data from django models.

Using Different Attributes for Model Fields

Let’s say you don’t want to store the type of the car as an integer, but as the
corresponding string instead. You need some way to convert the type field on
the model to a string, so we’ll just add a method for it:

models.py

class Car(models.Model):
 # ... #
 def type_to_string(self):
 """Convert the type field to its string representation
 (the boneheaded way).
 """
 if self.type == 1:
 return "Sedan"
 elif self.type == 2:
 return "Truck"
 else:
 return "SUV"

Now we need to tell our Document subclass to use that method instead of just
accessing the type field on the model directly. Change the CarDocument to look
like this:

documents.py

from django_elasticsearch_dsl import Document, fields

...

@registry.register_document
class CarDocument(Document):
 # add a string field to the Elasticsearch mapping called type, the
 # value of which is derived from the model's type_to_string attribute
 type = fields.TextField(attr="type_to_string")

 class Django:
 model = Car
 # we removed the type field from here
 fields = [
 'name',
 'color',
 'description',
]

After a change like this we need to rebuild the index with:

$./manage.py search_index --rebuild

Using prepare_field

Sometimes, you need to do some extra prepping before a field should be saved to
Elasticsearch. You can add a prepare_foo(self, instance) method to a Document
(where foo is the name of the field), and that will be called when the field
needs to be saved.

documents.py

...

class CarDocument(Document):
 # ... #

 foo = TextField()

 def prepare_foo(self, instance):
 return " ".join(instance.foos)

Handle relationship with NestedField/ObjectField

For example for a model with ForeignKey relationships.

models.py

class Car(models.Model):
 name = models.CharField()
 color = models.CharField()
 manufacturer = models.ForeignKey('Manufacturer')

class Manufacturer(models.Model):
 name = models.CharField()
 country_code = models.CharField(max_length=2)
 created = models.DateField()

class Ad(models.Model):
 title = models.CharField()
 description = models.TextField()
 created = models.DateField(auto_now_add=True)
 modified = models.DateField(auto_now=True)
 url = models.URLField()
 car = models.ForeignKey('Car', related_name='ads')

You can use an ObjectField or a NestedField.

documents.py

from django_elasticsearch_dsl import Document, fields
from .models import Car, Manufacturer, Ad

@registry.register_document
class CarDocument(Document):
 manufacturer = fields.ObjectField(properties={
 'name': fields.TextField(),
 'country_code': fields.TextField(),
 })
 ads = fields.NestedField(properties={
 'description': fields.TextField(analyzer=html_strip),
 'title': fields.TextField(),
 'pk': fields.IntegerField(),
 })

 class Index:
 name = 'cars'

 class Django:
 model = Car
 fields = [
 'name',
 'color',
]
 related_models = [Manufacturer, Ad] # Optional: to ensure the Car will be re-saved when Manufacturer or Ad is updated

 def get_queryset(self):
 """Not mandatory but to improve performance we can select related in one sql request"""
 return super(CarDocument, self).get_queryset().select_related(
 'manufacturer'
)

 def get_instances_from_related(self, related_instance):
 """If related_models is set, define how to retrieve the Car instance(s) from the related model.
 The related_models option should be used with caution because it can lead in the index
 to the updating of a lot of items.
 """
 if isinstance(related_instance, Manufacturer):
 return related_instance.car_set.all()
 elif isinstance(related_instance, Ad):
 return related_instance.car

Field Classes

Most Elasticsearch field types [https://www.elastic.co/guide/en/elasticsearch/reference/5.4/mapping-types.html] are supported. The attr argument is a dotted
“attribute path” which will be looked up on the model using Django template
semantics (dict lookup, attribute lookup, list index lookup). By default the attr
argument is set to the field name.

For the rest, the field properties are the same as elasticsearch-dsl
fields [http://elasticsearch-dsl.readthedocs.io/en/stable/persistence.html#mappings].

So for example you can use a custom analyzer [http://elasticsearch-dsl.readthedocs.io/en/stable/persistence.html#analysis]:

documents.py

...

html_strip = analyzer(
 'html_strip',
 tokenizer="standard",
 filter=["lowercase", "stop", "snowball"],
 char_filter=["html_strip"]
)

@registry.register_document
class CarDocument(Document):
 description = fields.TextField(
 analyzer=html_strip,
 fields={'raw': fields.KeywordField()}
)

 class Django:
 model = Car
 fields = [
 'name',
 'color',
]

Available Fields

	Simple Fields

	BooleanField(attr=None, **elasticsearch_properties)

	ByteField(attr=None, **elasticsearch_properties)

	CompletionField(attr=None, **elasticsearch_properties)

	DateField(attr=None, **elasticsearch_properties)

	DoubleField(attr=None, **elasticsearch_properties)

	FileField(attr=None, **elasticsearch_properties)

	FloatField(attr=None, **elasticsearch_properties)

	IntegerField(attr=None, **elasticsearch_properties)

	IpField(attr=None, **elasticsearch_properties)

	KeywordField(attr=None, **elasticsearch_properties)

	GeoPointField(attr=None, **elasticsearch_properties)

	GeoShapeField(attr=None, **elasticsearch_properties)

	ShortField(attr=None, **elasticsearch_properties)

	TextField(attr=None, **elasticsearch_properties)

	Complex Fields

	ObjectField(properties, attr=None, **elasticsearch_properties)

	NestedField(properties, attr=None, **elasticsearch_properties)

properties is a dict where the key is a field name, and the value is a field
instance.

Document id

The elasticsearch document id (_id) is not strictly speaking a field, as it is not
part of the document itself. The default behavior of django_elasticsearch_dsl
is to use the primary key of the model as the document’s id (pk or id).
Nevertheless, it can sometimes be useful to change this default behavior. For this, one
can redefine the generate_id(cls, instance) class method of the Document class.

For example, to use an article’s slug as the elasticsearch _id instead of the
article’s integer id, one could use:

models.py

from django.db import models

class Article(models.Model):
 # ... #

 slug = models.SlugField(
 max_length=255,
 unique=True,
)

 # ... #

documents.py

from .models import Article

class ArticleDocument(Document):
 class Django:
 model = Article

 # ... #

 @classmethod
 def generate_id(cls, article):
 return article.slug

Settings

ELASTICSEARCH_DSL_AUTOSYNC

Default: True

Set to False to globally disable auto-syncing.

ELASTICSEARCH_DSL_INDEX_SETTINGS

Default: {}

Additional options passed to the elasticsearch-dsl Index settings (like number_of_replicas or number_of_shards).

ELASTICSEARCH_DSL_AUTO_REFRESH

Default: True

Set to False not force an index refresh [https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-refresh.html] with every save.

ELASTICSEARCH_DSL_SIGNAL_PROCESSOR

This (optional) setting controls what SignalProcessor class is used to handle
Django’s signals and keep the search index up-to-date.

An example:

ELASTICSEARCH_DSL_SIGNAL_PROCESSOR = 'django_elasticsearch_dsl.signals.RealTimeSignalProcessor'

Defaults to django_elasticsearch_dsl.signals.RealTimeSignalProcessor.

You could, for instance, make a CelerySignalProcessor which would add
update jobs to the queue to for delayed processing.

ELASTICSEARCH_DSL_PARALLEL

Default: False

Run indexing (populate and rebuild) in parallel using ES’ parallel_bulk() method.
Note that some databases (e.g. sqlite) do not play well with this option.

Management Commands

Delete all indices in Elasticsearch or only the indices associate with a model (--models):

$ search_index --delete [-f] [--models [app[.model] app[.model] ...]]

Create the indices and their mapping in Elasticsearch:

$ search_index --create [--models [app[.model] app[.model] ...]]

Populate the Elasticsearch mappings with the django models data (index need to be existing):

$ search_index --populate [--models [app[.model] app[.model] ...]] [--parallel] [--refresh]

Recreate and repopulate the indices:

$ search_index --rebuild [-f] [--models [app[.model] app[.model] ...]] [--parallel] [--refresh]

Contributing

We are glad to welcome any contributor.

Report bugs or propose enhancements through github bug tracker

github bug tracker: https://github.com/sabricot/django-elasticsearch-dsl/issues

If you want to contribute, the code is on github:
https://github.com/sabricot/django-elasticsearch-dsl

Testing

You can run the tests by creating a Python virtual environment, installing
the requirements from requirements_test.txt (pip install -r requirements_test):

$ python runtests.py

For integration testing with a running Elasticsearch server:

$ python runtests.py --elasticsearch [localhost:9200]

TODO

	Add support for –using (use another Elasticsearch cluster) in management commands.

	Add management commands for mapping level operations (like update_mapping….).

	Generate ObjectField/NestField properties from a Document class.

	More examples.

	Better ESTestCase and documentation for testing

Index

 nav.xhtml

 Table of Contents

 		
 Django Elasticsearch DSL

 		
 Django AnySearch DSL

 		
 Manifest

 		
 Features

 		
 Quickstart

 		
 Install and configure

 		
 Declare data to index

 		
 Populate

 		
 Search

 		
 Index

 		
 Signals

 		
 Fields

 		
 Using Different Attributes for Model Fields

 		
 Using prepare_field

 		
 Handle relationship with NestedField/ObjectField

 		
 Field Classes

 		
 Available Fields

 		
 Document id

 		
 Settings

 		
 ELASTICSEARCH_DSL_AUTOSYNC

 		
 ELASTICSEARCH_DSL_INDEX_SETTINGS

 		
 ELASTICSEARCH_DSL_AUTO_REFRESH

 		
 ELASTICSEARCH_DSL_SIGNAL_PROCESSOR

 		
 ELASTICSEARCH_DSL_PARALLEL

 		
 Management Commands

 		
 Contributing

 		
 Testing

 		
 TODO

_static/minus.png

_static/plus.png

_static/file.png

