Django Elasticsearch DSL

Documentation
Release 7.1.1

sabricot and others

Dec 30, 2022

Django Elasticsearch DSL

1.1 Features.
Quickstart

2.1 Installand configure
2.2 Declaredatatoindex
23 Populate,
24 Search
Index

3.1 Signals oo
Fields

4.1 Using Different Attributes for Model Fields
4.2 Using prepare_field
4.3 Handle relationship with NestedField/ObjectField
44 FieldClasses
4.5 AvailableFields
4.6 Documentid
Settings

5.1 ELASTICSEARCH_DSL_AUTOSYNC
5.2 ELASTICSEARCH_DSL_INDEX SETTINGS .
5.3 ELASTICSEARCH_DSL_AUTO_REFRESH . .
54 ELASTICSEARCH_DSL_SIGNAL_PROCESSOR
5.5 ELASTICSEARCH_DSL_PARALLEL

Management Commands

Contributing
7.1 Testing
72 TODO

Indices and tables

CONTENTS

W W

~N N L

o

11
11
12
12
14
14
15

17
17
17
17
17
18

19

21
21
21

23

Django Elasticsearch DSL Documentation, Release 7.1.1

Contents:

CONTENTS 1

Django Elasticsearch DSL Documentation, Release 7.1.1

2 CONTENTS

CHAPTER
ONE

DJANGO ELASTICSEARCH DSL

Django Elasticsearch DSL is a package that allows indexing of django models in elasticsearch. It is built as a thin
wrapper around elasticsearch-dsl-py so you can use all the features developed by the elasticsearch-dsl-py team.

You can view the full documentation at https://django-elasticsearch-dsl.readthedocs.io

1.1 Features

* Based on elasticsearch-dsl-py so you can make queries with the Search class.
* Django signal receivers on save and delete for keeping Elasticsearch in sync.
e Management commands for creating, deleting, rebuilding and populating indices.
¢ Elasticsearch auto mapping from django models fields.
» Complex field type support (ObjectField, NestedField).
¢ Index fast using parallel indexing.
e Requirements
— Django >=1.11
- Python 2.7, 3.5,3.6,3.7,3.8

Elasticsearch Compatibility: The library is compatible with all Elasticsearch versions since 5.x but you have to use
a matching major version:

* For Elasticsearch 7.0 and later, use the major version 7 (7.x.y) of the library.
* For Elasticsearch 6.0 and later, use the major version 6 (6.x.y) of the library.

* For Elasticsearch 5.0 and later, use the major version 0.5 (0.5.x) of the library.

Elasticsearch 7.x
elasticsearch-dsl1>=7.0.0,<8.0.0

Elasticsearch 6.x
elasticsearch-dsl1>=6.0.0,<7.0.0

(continues on next page)

https://github.com/django-es/django-elasticsearch-dsl/actions/workflows/ci.yml
https://codecov.io/gh/django-es/django-elasticsearch-dsl
https://pypi.python.org/pypi/django-elasticsearch-dsl
https://django-elasticsearch-dsl.readthedocs.io/en/latest/
https://github.com/elastic/elasticsearch-dsl-py
https://django-elasticsearch-dsl.readthedocs.io
https://github.com/elastic/elasticsearch-dsl-py
http://elasticsearch-dsl.readthedocs.io/en/stable/search_dsl.html

Django Elasticsearch DSL Documentation, Release 7.1.1

(continued from previous page)

Elasticsearch 5.x
elasticsearch-dsl>=0.5.1,<6.0.0

4 Chapter 1. Django Elasticsearch DSL

CHAPTER
TWO

QUICKSTART

2.1 Install and configure

Install Django Elasticsearch DSL:

[pip install django-elasticsearch-dsl

Then add django_elasticsearch_dsl to the INSTALLED_APPS
You must define ELASTICSEARCH_DSL in your django settings.

For example:

ELASTICSEARCH_DSL={
'default': {
'hosts': 'localhost:9200'
3,
}

ELASTICSEARCH_DSL is then passed to elasticsearch-dsl-py.connections.configure (see here).

2.2 Declare data to index

Then for a model:

models.py

class Car(models.Model):
name = models.CharField()
color = models.CharField()
description = models.TextField()
type = models.IntegerField(choices=[

(1, "Sedan"),
(2, "Truck"),
(4, "Suv"),

D

To make this model work with Elasticsearch, create a subclass of django_elasticsearch_dsl.Document, create a
class Index inside the Document class to define your Elasticsearch indices, names, settings etc and at last register
the class using registry.register_document decorator. It is required to define Document class in documents. py
in your app directory.

http://elasticsearch-dsl.readthedocs.io/en/stable/configuration.html#multiple-clusters

Django Elasticsearch DSL Documentation, Release 7.1.1

documents.py

from django_elasticsearch_dsl import Document
from django_elasticsearch_dsl.registries import registry
from .models import Car

@registry.register_document
class CarDocument(Document) :
class Index:
Name of the Elasticsearch index
name = 'cars'
See Elasticsearch Indices API reference for available settings
settings = {'number_of_shards': 1,
'number_of_replicas': 0}

class Django:
model = Car # The model associated with this Document

The fields of the model you want to be indexed in Elasticsearch

fields = [
'name’,
'color',
'description’,
"type',

]

Ignore auto updating of Elasticsearch when a model is saved
or deleted:
ignore_signals = True

Configure how the index should be refreshed after an update.

See Elasticsearch documentation for supported options:

https://www.elastic.co/guide/en/elasticsearch/reference/master/docs-refresh.
—html

This per-Document setting overrides settings.ELASTICSEARCH_DSL_AUTO_REFRESH.

auto_refresh = False

Paginate the django queryset used to populate the index with the specified size
(by default it uses the database driver's default setting)
queryset_pagination = 5000

2.3 Populate

To create and populate the Elasticsearch index and mapping use the search_index command:

[$./manage.py search_index --rebuild

Now, when you do something like:

6 Chapter 2. Quickstart

Django Elasticsearch DSL Documentation, Release 7.1.1

car = Car(

name="Car one",

color="red",

type=1,

description="A beautiful car"
)

car.save()

The object will be saved in Elasticsearch too (using a signal handler).

2.4 Search

To get an elasticsearch-dsl-py Search instance, use:

s = CarDocument.search().filter("term", color="red")
or
s = CarDocument.search() .query("match", description="beautiful")
for hit in s:
print(

"Car name : , description ".format(hit.name, hit.description)

)

The previous example returns a result specific to elasticsearch_dsl, but it is also possible to convert the elastisearch
result into a real django queryset, just be aware that this costs a sql request to retrieve the model instances with the ids
returned by the elastisearch query.

s = CarDocument.search().filter("term", color="blue")[:30]
gs = s.to_queryset()
qs is just a django queryset and it is called with order_by to keep
the same order as the elasticsearch result.
for car in gs:
print(car.name)

2.4. Search 7

https://elasticsearch-dsl.readthedocs.io/en/latest/search_dsl.html#the-search-object
http://elasticsearch-dsl.readthedocs.io/en/latest/search_dsl.html#response

Django Elasticsearch DSL Documentation, Release 7.1.1

8 Chapter 2. Quickstart

CHAPTER
THREE

INDEX

In typical scenario using class Index on a Document class is sufficient to perform any action. In a few cases though it
can be useful to manipulate an Index object directly.

To define an Elasticsearch index you must instantiate a elasticsearch_dsl.Index class and set the name and settings
of the index. After you instantiate your class, you need to associate it with the Document you want to put in this
Elasticsearch index and also add the registry.register_document decorator.

-

documents.py

from elasticsearch_dsl import Index

from django_elasticsearch_dsl import Document
from .models import Car, Manufacturer

The name of your index
car = Index('cars')
See Elasticsearch Indices API reference for available settings
car.settings(
number_of_shards=1,
number_of_replicas=0

@registry.register_document
@car.document
class CarDocument (Document) :
class Django:
model = Car

fields = [
'name’,
'color',
]

@registry.register_document
class ManufacturerDocument (Document) :
class Index:
name = 'manufacture'’
settings = {'number_of_shards': 1,
'number_of_replicas': 0}

class Django:
model = Manufacturer
fields = [
'name’,

(continues on next page)

Django Elasticsearch DSL Documentation, Release 7.1.1

(continued from previous page)

'country_code',

When you execute the command:

[$./manage.py search_index --rebuild }

This will create two index named cars and manufacture in Elasticsearch with appropriate mapping.

** If your model have huge amount of data, its preferred to use parallel indexing. To do that, you can pass —parallel
flag while reindexing or populating. **

3.1 Signals

* django_elasticsearch_dsl.signals.post_index
Sent after document indexing is completed. (not applicable for parallel indexing). Provides the following
arguments:

sender
A subclass of django_elasticsearch_dsl.documents.DocType used to perform indexing.

instance
A django_elasticsearch_dsl.documents.DocType subclass instance.

actions
A generator containing document data that were sent to elasticsearch for indexing.

response
The response from bulk() function of elasticsearch-py, which includes success count and
failed count or error list.

10 Chapter 3. Index

CHAPTER
FOUR

FIELDS

Once again the django_elasticsearch_dsl. fields are subclasses of elasticsearch-dsl-py fields. They just add
support for retrieving data from django models.

4.1 Using Different Attributes for Model Fields

Let’s say you don’t want to store the type of the car as an integer, but as the corresponding string instead. You need
some way to convert the type field on the model to a string, so we’ll just add a method for it:

models.py

class Car(models.Model):
def type_to_string(self):
"""Convert the type field to its string representation
(the boneheaded way) .
if self.type ==
return "Sedan"
elif self.type ==
return "Truck"
else:
return "SUV"

L J

Now we need to tell our Document subclass to use that method instead of just accessing the type field on the model
directly. Change the CarDocument to look like this:

s N

documents.py
from django_elasticsearch_dsl import Document, fields
@registry.register_document
class CarDocument (Document) :
add a string field to the Elasticsearch mapping called type, the
value of which is derived from the model's type_to_string attribute

type = fields.TextField(attr="type_to_string")

class Django:

(continues on next page)

11

http://elasticsearch-dsl.readthedocs.io/en/stable/persistence.html#mappings

Django Elasticsearch DSL Documentation, Release 7.1.1

(continued from previous page)

model = Car
we removed the type field from here
fields = [

'name’,

'color',

'description’,

]

After a change like this we need to rebuild the index with:

[$./manage.py search_index --rebuild

4.2 Using prepare_field

Sometimes, you need to do some extra prepping before a field should be saved to Elasticsearch. You can add a
prepare_foo(self, instance) method to a Document (where foo is the name of the field), and that will be called
when the field needs to be saved.

documents.py
...

class CarDocument (Document) :
...

foo = TextField()

def prepare_foo(self, instance):
return " ".join(instance.foos)

4.3 Handle relationship with NestedField/ObjectField

For example for a model with ForeignKey relationships.

models.py

class Car(models.Model):
name = models.CharField()
color = models.CharField()
manufacturer = models.ForeignKey('Manufacturer")

class Manufacturer(models.Model):
name = models.CharField()
country_code = models.CharField(max_length=2)
created = models.DateField()

class Ad(models.Model):
title = models.CharField()

(continues on next page)

12 Chapter 4. Fields

Django Elasticsearch DSL Documentation, Release 7.1.1

(continued from previous page)

description = models.TextField()

created = models.DateField(auto_now_add=True)
modified = models.DateField(auto_now=True)

url = models.URLField()

car = models.ForeignKey('Car', related_name="ads"')

L J

You can use an ObjectField or a NestedField.

documents.py

from django_elasticsearch_dsl import Document, fields
from .models import Car, Manufacturer, Ad

@registry.register_document
class CarDocument (Document) :
manufacturer = fields.ObjectField(properties={
'name': fields.TextField(Q),
'country_code': fields.TextField(),
b
ads = fields.NestedField(properties={
'description': fields.TextField(analyzer=html_strip),
"title': fields.TextField(),
'pk': fields.IntegerField(),
b

class Index:
name = 'cars'

class Django:
model = Car

fields = [
'name’,
'color',
]

related_models = [Manufacturer, Ad] # Optional: to ensure the Car will be re-
—»saved when Manufacturer or Ad is updated

def get_queryset(self):
"""Not mandatory but to improve performance we can select related in one sql..

i

—request
return super(CarDocument, self).get_queryset().select_related(
'manufacturer’
)

def get_instances_from_related(self, related_instance):
"""Tf related_models is set, define how to retrieve the Car instance(s) from the.
—related model.
The related_models option should be used with caution because it can lead in the.
—index
to the updating of a lot of items.

i

if isinstance(related_instance, Manufacturer):

(continues on next page)

4.3. Handle relationship with NestedField/ObjectField 13

Django Elasticsearch DSL Documentation, Release 7.1.1

return related_instance.car_set.all()
elif isinstance(related_instance, Ad):
return related_instance.car

(continued from previous page)

4.4 Field Classes

Most Elasticsearch field types are supported. The attr argument is a dotted “attribute path” which will be looked up
on the model using Django template semantics (dict lookup, attribute lookup, list index lookup). By default the attr

argument is set to the field name.
For the rest, the field properties are the same as elasticsearch-dsl fields.

So for example you can use a custom analyzer:

documents.py
...

html_strip = analyzer(
'html_strip',
tokenizer="standard",
filter=["lowercase", "stop", "snowball"],
char_filter=["html_strip"]

)

@registry.register_document
class CarDocument(Document) :
description = fields.TextField(
analyzer=html_strip,
fields={'raw': fields.KeywordField()}
)

class Django:
model = Car

fields = [
'name’,
'color',
]

4.5 Available Fields

» Simple Fields

— BooleanField(attr=None, **elasticsearch_properties)

ByteField(attr=None, **elasticsearch_properties)

CompletionField(attr=None, **elasticsearch_properties)

DateField(attr=None, **elasticsearch_properties)

DoubleField(attr=None, **elasticsearch_properties)

14

Chapter 4. Fields

https://www.elastic.co/guide/en/elasticsearch/reference/5.4/mapping-types.html
http://elasticsearch-dsl.readthedocs.io/en/stable/persistence.html#mappings
http://elasticsearch-dsl.readthedocs.io/en/stable/persistence.html#analysis

Django Elasticsearch DSL Documentation, Release 7.1.1

— FileField(attr=None, **elasticsearch_properties)

— FloatField(attr=None, **elasticsearch_properties)

— IntegerField(attr=None, **elasticsearch_properties)
— IpField(attr=None, **elasticsearch_properties)

— KeywordField(attr=None, **elasticsearch_properties)
— GeoPointField(attr=None, **elasticsearch_properties)
— GeoShapeField(attr=None, **elasticsearch_properties)

— ShortField(attr=None, **elasticsearch_properties)

TextField(attr=None, **elasticsearch_properties)

* Complex Fields
— ObjectField(properties, attr=None, **elasticsearch_properties)
— NestedField(properties, attr=None, **elasticsearch_properties)

properties is a dict where the key is a field name, and the value is a field instance.

4.6 Document id

The elasticsearch document id (_id) is not strictly speaking a field, as it is not part of the document itself. The default
behavior of django_elasticsearch_dsl is to use the primary key of the model as the document’s id (pk or id). Nev-
ertheless, it can sometimes be useful to change this default behavior. For this, one can redefine the generate_id(cls,
instance) class method of the Document class.

For example, to use an article’s slug as the elasticsearch _id instead of the article’s integer id, one could use:

models.py
from django.db import models

class Article(models.Model):
...

slug = models.SlugField(

max_length=255,
unique=True,

documents.py

from .models import Article

class ArticleDocument (Document) :
class Django:

model = Article

(continues on next page)

4.6. Document id 15

Django Elasticsearch DSL Documentation, Release 7.1.1

(continued from previous page)

...

@classmethod
def generate_id(cls, article):
return article.slug

16 Chapter 4. Fields

CHAPTER
FIVE

SETTINGS

5.1 ELASTICSEARCH_DSL_AUTOSYNC

Default: True

Set to False to globally disable auto-syncing.

5.2 ELASTICSEARCH_DSL_INDEX_SETTINGS

Default: {}

Additional options passed to the elasticsearch-dsl Index settings (like number_of_replicas or number_of_shards).

5.3 ELASTICSEARCH_DSL_AUTO_REFRESH

Default: True

Set to False not force an index refresh with every save.

5.4 ELASTICSEARCH_DSL_SIGNAL_PROCESSOR

This (optional) setting controls what SignalProcessor class is used to handle Django’s signals and keep the search index
up-to-date.

An example:

ELASTICSEARCH_DSL_SIGNAL_PROCESSOR = 'django_elasticsearch_dsl.signals.
—RealTimeSignalProcessor'

Defaults to django_elasticsearch_dsl.signals.RealTimeSignalProcessor.

You could, for instance, make a CelerySignalProcessor which would add update jobs to the queue to for delayed
processing.

17

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-refresh.html

Django Elasticsearch DSL Documentation, Release 7.1.1

5.5 ELASTICSEARCH_DSL_PARALLEL

Default: False

Run indexing (populate and rebuild) in parallel using ES’ parallel_bulk() method. Note that some databases (e.g. sqlite)
do not play well with this option.

18 Chapter 5. Settings

CHAPTER
SIX

MANAGEMENT COMMANDS

Delete all indices in Elasticsearch or only the indices associate with a model (--models):

[$ search_index --delete [-f] [--models [app[.model] app[.model] ...]1]

Create the indices and their mapping in Elasticsearch:

[$ search_index --create [--models [app[.model] app[.model] ...]]

Populate the Elasticsearch mappings with the django models data (index need to be existing):

$ search_index --populate [--models [app[.model] app[.model] ...]] [--parallel] [--
—refresh]

Recreate and repopulate the indices:

$ search_index --rebuild [-f] [--models [app[.model] app[.model] ...]] [--parallel] [--
—refresh]

19

Django Elasticsearch DSL Documentation, Release 7.1.1

20

Chapter 6. Management Commands

CHAPTER
SEVEN

CONTRIBUTING

We are glad to welcome any contributor.
Report bugs or propose enhancements through github bug tracker
github bug tracker: https://github.com/sabricot/django-elasticsearch-dsl/issues

If you want to contribute, the code is on github: https://github.com/sabricot/django-elasticsearch-dsl

7.1 Testing

You can run the tests by creating a Python virtual environment, installing the requirements from requirements_test.
txt (pip install -r requirements_test):

[$ python runtests.py

For integration testing with a running Elasticsearch server:

[$ python runtests.py --elasticsearch [localhost:9200]

7.2 TODO

* Add support for —using (use another Elasticsearch cluster) in management commands.
* Add management commands for mapping level operations (like update_mapping....).
* Generate ObjectField/NestField properties from a Document class.

* More examples.

Better ESTestCase and documentation for testing

21

https://github.com/sabricot/django-elasticsearch-dsl/issues
https://github.com/sabricot/django-elasticsearch-dsl

Django Elasticsearch DSL Documentation, Release 7.1.1

22

Chapter 7. Contributing

CHAPTER
EIGHT

INDICES AND TABLES

* genindex
* modindex

¢ search

23

	Django Elasticsearch DSL
	Features

	Quickstart
	Install and configure
	Declare data to index
	Populate
	Search

	Index
	Signals

	Fields
	Using Different Attributes for Model Fields
	Using prepare_field
	Handle relationship with NestedField/ObjectField
	Field Classes
	Available Fields
	Document id

	Settings
	ELASTICSEARCH_DSL_AUTOSYNC
	ELASTICSEARCH_DSL_INDEX_SETTINGS
	ELASTICSEARCH_DSL_AUTO_REFRESH
	ELASTICSEARCH_DSL_SIGNAL_PROCESSOR
	ELASTICSEARCH_DSL_PARALLEL

	Management Commands
	Contributing
	Testing
	TODO

	Indices and tables

